1 Express $\log _{a} x^{3}+\log _{a} \sqrt{x}$ in the form $k \log _{a} x$.

2 The points $(2,6)$ and $(3,18)$ lie on the curve $y=a x^{n}$.
Use logarithms to find the values of a and n, giving your answers correct to 2 decimal places. [5]

Fig. 12

A branching plant has stems, nodes, leaves and buds.

- There are 7 leaves at each node.
- From each node, 2 new stems grow.
- At the end of each final stem, there is a bud.

Fig. 12 shows one such plant with 3 stages of nodes. It has 15 stems, 7 nodes, 49 leaves and 8 buds.
(i) One of these plants has 10 stages of nodes.
(A) How many buds does it have?
(B) How many stems does it have?
(ii) (A) Show that the number of leaves on one of these plants with n stages of nodes is

$$
\begin{equation*}
7\left(2^{n}-1\right) \tag{2}
\end{equation*}
$$

(B) One of these plants has n stages of nodes and more than 200000 leaves. Show that n satisfies the inequality $n>\frac{\log _{10} 200007-\log _{10} 7}{\log _{10} 2}$. Hence find the least possible value of n.

4 Simplify
(i) $10-3 \log _{a} a$,
(ii) $\frac{\log _{10} a^{5}+\log _{10} \sqrt{a}}{\log _{10} a}$.
[2]

5 Answer part (i) of this question on the insert provided.

Ash trees grow quickly for the first years of their life, then more slowly. This table shows the height of a tree at various ages.

Age $(t$ years $)$	4	7	10	15	20	40
Height $(h \mathrm{~m})$	4	9	12	17	19	26

The height, $h \mathrm{~m}$, of an ash tree when it is t years old may be modelled by an equation of the form

$$
h=a \log _{10} t+b .
$$

(i) On the insert, complete the table and plot h against $\log _{10} t$, drawing by eye a line of best fit.
(ii) Use your graph to find an equation for h in terms of $\log _{10} t$ for this model.
(iii) Find the height of the tree at age 100 years, as predicted by this model.
(iv) Find the age of the tree when it reaches a height of 29 m , according to this model.
(v) Comment on the suitability of the model when the tree is very young.

6 Use logarithms to solve the equation $5^{x}=235$, giving your answer correct to 2 decimal places.

7 (i) Write down the values of $\log _{a} 1$ and $\log _{a} a$, where $a>1$.
(ii) Show that $\log _{a} x^{10} \quad 2 \log _{a}\left(\frac{x^{3}}{4}\right)=4 \log _{a}(2 x)$.

8 (i) Sketch the graph of $y=3^{x}$.
(ii) Use logarithms to solve the equation $3^{x}=20$. Give your answer correct to 2 decimal places.

9 Write down the values of $\log _{a} a$ and $\log _{a}\left(a^{3}\right)$.

10 Use logarithms to solve the equation $5^{3 x}=100$. Give your answer correct to 3 decimal places.

